Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS One ; 17(11): e0277431, 2022.
Article in English | MEDLINE | ID: covidwho-2140646

ABSTRACT

Early detection of lung cancer is a crucial factor for increasing its survival rates among the detected patients. The presence of carbonyl volatile organic compounds (VOCs) in exhaled breath can play a vital role in early detection of lung cancer. Identifying these VOC markers in breath samples through innovative statistical and machine learning techniques is an important task in lung cancer research. Therefore, we proposed an experimental approach for generation of VOC molecular concentration data using unique silicon microreactor technology and further identification and characterization of key relevant VOCs important for lung cancer detection through statistical and machine learning algorithms. We reported several informative VOCs and tested their effectiveness in multi-group classification of patients. Our analytical results indicated that seven key VOCs, including C4H8O2, C13H22O, C11H22O, C2H4O2, C7H14O, C6H12O, and C5H8O, are sufficient to detect the lung cancer patients with higher mean classification accuracy (92%) and lower standard error (0.03) compared to other combinations. In other words, the molecular concentrations of these VOCs in exhaled breath samples were able to discriminate the patients with lung cancer (n = 156) from the healthy smoker and nonsmoker controls (n = 193) and patients with benign pulmonary nodules (n = 65). The quantification of carbonyl VOC profiles from breath samples and identification of crucial VOCs through our experimental approach paves the way forward for non-invasive lung cancer detection. Further, our experimental and analytical approach of VOC quantitative analysis in breath samples may be extended to other diseases, including COVID-19 detection.


Subject(s)
Body Fluids , COVID-19 , Lung Neoplasms , Multiple Pulmonary Nodules , Volatile Organic Compounds , Humans , Lung Neoplasms/diagnosis
2.
Vaccines (Basel) ; 10(8)2022 Aug 20.
Article in English | MEDLINE | ID: covidwho-1997865

ABSTRACT

BACKGROUND: The impact of chronic health conditions (CHCs) on serostatus post-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is unknown. METHODS: We assessed serostatus post-SARS-CoV-2 vaccination among fully vaccinated adult residents of Jefferson County, Kentucky, USA, from April 2021 to August 2021. Serostatus was determined by qualitative analysis of SARS-CoV-2-specific Spike IgG antibodies via enzyme-linked immunoassay (ELISA) in peripheral blood samples. RESULTS: Of the 5178 fully vaccinated participants, 51 were seronegative and 5127 were seropositive. Chronic kidney disease (CKD) and autoimmune disease showed the highest association with negative serostatus in fully vaccinated individuals. The absence of any CHC was strongly associated with positive serostatus. The risk of negative serostatus increased as the total number of pre-existing CHCs increased. Similarly, the use of two or more CHC-related medications was associated with seronegative status. CONCLUSIONS: The presence of any CHC, especially CKD or autoimmune disease, increased the likelihood of seronegative status among individuals who were fully vaccinated to SAR-CoV-2. This risk increased with a concurrent increase in number of comorbidities, especially with multiple medications. The absence of any CHC was protective and increased the likelihood of a positive serological response. These results will help develop appropriate guidelines for booster doses and targeted vaccination programs.

3.
ACS ES&T water ; 2022.
Article in English | EuropePMC | ID: covidwho-1824014

ABSTRACT

The majority of sewer systems in the United States and other countries are operated by public utilities. In the absence of any regulation, the public perception of wastewater monitoring for population health biomarkers is an important consideration for a public utility commission when allocating resources for this purpose. We conducted a survey in August 2021 as part of an ongoing COVID-19 community prevalence study in Louisville/Jefferson County, KY, US. The survey comprised seven questions about wastewater awareness and privacy concerns and was sent to approximately 35 000 households randomly distributed within the county. A total of 1220 adults were involved in the probability sample, and data from 981 respondents were used in the analysis. A total of 2444 adults additionally responded to the convenience sample, and data from 1751 respondents were used in the analysis. The samples were weighted to obtain estimates representative of all adults in the county. Public awareness of tracking the virus that causes COVID-19 in sewers was low. Opinions strongly support the public disclosure of monitoring results. Responses showed that people more strongly supported measurements in the largest areas (>50 000 households), typically representing population levels found in a large community wastewater treatment plant. Those with a history of COVID-19 infection were more likely to support highly localized monitoring. Understanding wastewater surveillance strategies and privacy concern thresholds requires an in-depth and comprehensive analysis of public opinion for continued success and effective public health monitoring. This study investigated the public awareness of and support for the use of wastewater for SARS-CoV-2 monitoring in Louisville, KY. The researchers found that awareness was low but support was strong. The researchers concluded that wastewater surveillance strategies and privacy concern thresholds require an in-depth and comprehensive analysis of public opinion for continued success and effective public health monitoring.

4.
Nonlinear Dyn ; 107(3): 3025-3040, 2022.
Article in English | MEDLINE | ID: covidwho-1813772

ABSTRACT

An unprecedented outbreak of the novel coronavirus (COVID-19) in the form of peculiar pneumonia has spread globally since its first case in Wuhan province, China, in December 2019. Soon after, the infected cases and mortality increased rapidly. The future of the pandemic's progress was uncertain, and thus, predicting it became crucial for public health researchers. These predictions help the effective allocation of health-care resources, stockpiling, and help in strategic planning for clinicians, government authorities, and public health policymakers after understanding the extent of the effect. The main objective of this paper is to develop a hybrid forecasting model that can generate real-time out-of-sample forecasts of COVID-19 outbreaks for five profoundly affected countries, namely the USA, Brazil, India, the UK, and Canada. A novel hybrid approach based on the Theta method and autoregressive neural network (ARNN) model, named Theta-ARNN (TARNN) model, is developed. Daily new cases of COVID-19 are nonlinear, non-stationary, and volatile; thus, a single specific model cannot be ideal for future prediction of the pandemic. However, the newly introduced hybrid forecasting model with an acceptable prediction error rate can help healthcare and government for effective planning and resource allocation. The proposed method outperforms traditional univariate and hybrid forecasting models for the test datasets on an average.

5.
PLoS One ; 16(2): e0246167, 2021.
Article in English | MEDLINE | ID: covidwho-1088752

ABSTRACT

IMPORTANCE: Intensity and duration of the COVID-19 pandemic, and planning required to balance concerns of saving lives and avoiding economic collapse, could depend significantly on whether SARS-CoV-2 transmission is sensitive to seasonal changes. OBJECTIVE: Hypothesis is that increasing temperature results in reduced SARS CoV-2 transmission and may help slow the increase of cases over time. SETTING: Fifty representative Northern Hemisphere countries meeting specific criteria had sufficient COVID-19 case and meteorological data for analysis. METHODS: Regression was used to find the relationship between the log of number of COVID-19 cases and temperature over time in 50 representative countries. To summarize the day-day variability, and reduce dimensionality, we selected a robust measure, Coefficient of Time (CT), for each location. The resulting regression coefficients were then used in a multivariable regression against meteorological, country-level and demographic covariates. RESULTS: Median minimum daily temperature showed the strongest correlation with the reciprocal of CT (which can be considered as a rate associated with doubling time) for confirmed cases (adjusted R2 = 0.610, p = 1.45E-06). A similar correlation was found using median daily dewpoint, which was highly colinear with temperature, and therefore was not used in the analysis. The correlation between minimum median temperature and the rate of increase of the log of confirmed cases was 47% and 45% greater than for cases of death and recovered cases of COVID-19, respectively. This suggests the primary influence of temperature is on SARS-CoV-2 transmission more than COVID-19 morbidity. Based on the correlation between temperature and the rate of increase in COVID-19, it can be estimated that, between the range of 30 to 100 degrees Fahrenheit, a one degree increase is associated with a 1% decrease-and a one degree decrease could be associated with a 3.7% increase-in the rate of increase of the log of daily confirmed cases. This model of the effect of decreasing temperatures can only be verified over time as the pandemic proceeds through colder months. CONCLUSIONS: The results suggest that boreal summer months are associated with slower rates of COVID-19 transmission, consistent with the behavior of a seasonal respiratory virus. Knowledge of COVID-19 seasonality could prove useful in local planning for phased reductions social interventions and help to prepare for the timing of possible pandemic resurgence during cooler months.


Subject(s)
COVID-19/transmission , SARS-CoV-2/physiology , COVID-19/metabolism , Hot Temperature , Humans , Meteorological Concepts , Pandemics , SARS-CoV-2/isolation & purification , Seasons , Weather
6.
BMC Med Res Methodol ; 20(1): 220, 2020 08 31.
Article in English | MEDLINE | ID: covidwho-736373

ABSTRACT

BACKGROUND: Because of unknown features of the COVID-19 and the complexity of the population affected, standard clinical trial designs on treatments may not be optimal in such patients. We propose two independent clinical trials designs based on careful grouping of patient and outcome measures. METHODS: Using the World Health Organization ordinal scale on patient status, we classify treatable patients (Stages 3-7) into two risk groups. Patients in Stages 3, 4 and 5 are categorized as the intermediate-risk group, while patients in Stages 6 and 7 are categorized as the high-risk group. To ensure that an intervention, if deemed efficacious, is promptly made available to vulnerable patients, we propose a group sequential design incorporating four factors stratification, two interim analyses, and a toxicity monitoring rule for the intermediate-risk group. The primary response variable (binary variable) is based on the proportion of patients discharged from hospital by the 15th day. The goal is to detect a significant improvement in this response rate. For the high-risk group, we propose a group sequential design incorporating three factors stratification, and two interim analyses, with no toxicity monitoring. The primary response variable for this design is 30 day mortality, with the goal of detecting a meaningful reduction in mortality rate. RESULTS: Required sample size and toxicity boundaries are calculated for each scenario. Sample size requirements for designs with interim analyses are marginally greater than ones without. In addition, for both the intermediate-risk group and the high-risk group, the required sample size with two interim analyses is almost identical to analyses with just one interim analysis. CONCLUSIONS: We recommend using a binary outcome with composite endpoints for patients in Stage 3, 4 or 5 with a power of 90% to detect an improvement of 20% in the response rate, and a 30 day mortality rate outcome for those in Stage 6 or 7 with a power of 90% to detect 15% (effect size) reduction in mortality rate. For the intermediate-risk group, two interim analyses for efficacy evaluation along with toxicity monitoring are encouraged. For the high-risk group, two interim analyses without toxicity monitoring is advised.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Data Interpretation, Statistical , Pneumonia, Viral/therapy , Research Design , COVID-19 , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Humans , Outcome Assessment, Health Care , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL